
Getting The Measure Of

TickIT

Guidance and information about the emerging ISO

measurement standards for improving software

processes and how they relate to ISO 9001:2000.

Getting the measure of TickIT
Draft 1

December 1999

Getting the measure of TickIT

Guidance and information about the emerging ISO measurement standards for
improving software processes and how they relate to ISO 9001:2000

Please activate the 'Navigation Panel' button on your Acrobat Viewer to see document structure

DISC TickIT Office
389 Chiswick High Road

London, W4 4AL

Tel: +44 (0) 20 8996 7427
Fax: +44 (0) 20 8996 7429

and select sections of interest. The document also contains active links to web sites.

Getting the measure of TickIT
February 2002

© BSI 2002

Contents

1. Introduction __1

2. What should be measured and why? __1
2.1 Quantifiable benefits of making measurements _____________________________________1
2.2 Standards and guidance related to measurements __________________________________2

2.2.1 ISO/IEC 9126 Software Engineering - Product quality_________________________________ 2
2.2.2 ISO/IEC 14598 Information technology - Software product evaluation ____________________ 3
2.2.3 ISO/IEC 15939 Information technology - Software measurement process framework_________ 3

3. Developing and applying a measurement programme ________________________4
3.1 Measurements and quality objectives __4
3.2 Measurement planning__4

3.2.1 What needs to be covered ___ 4
3.2.2 A phased approach___ 4
3.2.3 Some pacing issues __ 5
3.2.4 Operating the Plan ___ 5

3.3 Measurements and ISO 9001:2000 requirements ___________________________________6
3.3.1 Quality management system – general requirements (clause 4.1) _________________________ 6
3.3.2 Control of records (clause 4.2.4) __ 6
3.3.3 Quality policy (clause 5.3)___ 6
3.3.4 Planning – quality objectives (clause 5.4.1) ___ 6
3.3.5 Competence, awareness and training (clause 6.2.2) ___________________________________ 6
3.3.6 Planning of product realization (clause 7.1) ___ 7
3.3.7 Review of requirements related to product (clause 7.2.2) _______________________________ 7
3.3.8 Design and development planning (clause 7.3.1) _____________________________________ 7
3.3.9 Design and development verification (clause 7.3.5) ___________________________________ 7
3.3.10 Design and development validation (clause 7.3.6) ____________________________________ 7
3.3.11 Control of production and service provision (clause 7.5.1)______________________________ 7
3.3.12 Validation of processes for production and service provision (clause 7.5.2) ________________ 7
3.3.13 Identification and traceability (clause 7.5.3) ___ 7
3.3.14 Control of monitoring and measuring devices (clause 7.6) ______________________________ 7
3.3.15 Measurement, analysis and improve-ment – general (clause 8.1) _________________________ 7
3.3.16 Customer satisfaction (clause 8.2.1) ___ 8
3.3.17 Internal audit (clause 8.2.2) __ 8
3.3.18 Monitoring and measurement of processes (clause 8.2.3) _______________________________ 8
3.3.19 Monitoring and measurement of product (clause 8.2.4) ________________________________ 8
3.3.20 Analysis of data (clause 8.4) ___ 8
3.3.21 Continual improvement (clause 8.5.1)__ 8
3.3.22 Preventive actions (clause 8.5.3) __ 8

4. Using software measurements __8
4.1 Measurement processes for developers __9

4.1.1 Organization ___ 9
4.1.2 Project planning and quality requirements___ 9
4.1.3 Specifications __ 9
4.1.4 Design and planning __ 10
4.1.5 Build and test__ 10

4.2 Measurement processes for acquirers ___10
4.2.1 Establishment of requirements___ 10
4.2.2 Evaluation specification__ 10
4.2.3 Evaluation design __ 11
4.2.4 Evaluation execution __ 11

Getting the measure of TickIT
February 2002

© BSI 2002

4.3 Evaluating software measurements ___11
4.3.1 Evaluation requirements ___ 11
4.3.2 Evaluation specification__ 11
4.3.3 Evaluation plan and evaluation modules ___ 12
4.3.4 Evaluation results __ 12

5. Taking measurement concepts further______________________________________12

6. The future ___12

Appendix A - Measurement terminology___13

Appendix B - A summary of measurement techniques _____________________________14

Appendix C - Other useful standards__15

Appendix D - Reference material __17

Getting the measure of TickIT
February 2002

Page 1
© BSI 2002

1. Introduction
An important new element in the 2000 issue of ISO
9001 is the requirement to measure processes, products
and quality objectives. Measurement of processes is
seen as a critical component of process improvement.
Measurement of product helps to assure the quality of
deliverables and in turn, also helps in the improvement
of the processes that contribute to product realization.

The purpose of this guide is to help those organizations
who want to take software measurements seriously
whilst also addressing the needs of ISO 9001:2000. It
has been produced by the BSI DISC TickIT Guidance
committee, BRD/3/1, to promote understanding and
constructive use of measurement tools. The guidelines
are intended to benefit all organizations involved in
software development - not just those that are TickIT-
registered. However, if an organization already has a
quality system in place for ISO 9001 and TickIT
registration, this guidance can be used to build on the
existing regime by means of a combination of
experience, best practice and the emerging ISO/IEC
standards for software engineering. A second purpose
of this guide is to serve as an introduction to a much
more detailed work entitled "Quantitative software
management - Software measurement methods", which
provides more detail for the standards and processes
discussed here. In both documents, extensive use is
made of other publications dealing with measurement
of software, and these are referenced in the appendices.

The history of effective software measurement is not
encouraging. The software engineering community,
including organizations certificated under the TickIT
scheme, has tended to regard measurement as an easily
avoided diversion, if performed at all, and having little
impact on quality improvement.

ISO 9001:1994 clause 4.20, Statistical techniques, only
required the user to consider the requirements of
process and product measures. As written in the 1994
standard, this clause was not particularly helpful, hard
to enforce, and often ignored without too much risk of
gaining a nonconformity. In the past where measure-
ments were attempted, they were often restricted to
counting the number of errors reported and possibly
how long it takes to correct them, but that, generally,
was as far as it went. Very rarely were these figures
taken and used proactively to support improvement.

ISO 9001:2000 however, recognizes that measure-
ments are important, vital in fact, if organizations are
going to have any chance of assessing, monitoring and
improving the quality of their product or service.

Compliance with all the standards identified below is
not necessary for improvements to be achieved,
although organizations involved in software may well

find that, increasingly, compliance requirements are
being written into certain types of software contract.
TickIT is intended to support and provide confidence
of software quality for acquirers, developers and
support personnel, with additional guidance for
assessors. This document therefore attempts to provide
similar support for these different but complementary
views of software measurement.

Appendix A describes some of the terminology used to
monitor software processes and products. In conven-
tional parlance, the term ‘metric’ applies to the method
and scale, whereas ‘measurement’ involves the use of
metrics to assign values. In general literature, however,
the two terms tend to be used inter-changeably. In this
document, ‘measurement’ is used as the general term
except where a method or scale is specifically intended.

2. What should be measured and
why?

Users should not be measuring just to satisfy the
requirements of ISO 9001:2000 clauses 8.2.3 and
8.2.4, and thus auditors. Measurement needs to be
done with clear objectives in mind, and the parameters
chosen so that both quantitative and qualitative benefits
may be obtained. One of the Quality Management
Principles of ISO 9000:2000 is "a factual approach to
decision making". Use of measurement techniques will
help to address this principle.

First of all, it is important to assess what aspects of
software can sensibly be measured, economically and
with what benefit? Next, having obtained the measure-
ments, how can they be interpreted and made use of? A
measurement programme that shows no evidence of
benefit will soon be discarded, or, possibly worse,
continued by personnel with no clear understanding of
what is required, simply because it has become
proceduralized. This will waste time and effort and
degrade the prime objectives of measurement.

2.1 Quantifiable benefits of making
measurements

Some of the more immediate - and quantifiable -
benefits of measurements are:

• validating the completeness of a requirements
definition,

• identifying and measuring compliance of software
requirements,

• identifying and measuring attainment of software
design objectives,

• identifying and measuring completeness of
software testing objectives,

Next column

Getting the measure of TickIT
February 2002

Page 2
© BSI 2002

• identifying user acceptance criteria for a comp-
leted software product,

• providing a measure of confidence in specific
quality requirements of the product, for example,
reliability and functionality.

2.2 Standards and guidance related to
measurements

Help is at hand in the form of a number of standards
currently being developed by ISO and IEC. In parti-
cular, ISO/IEC 9126 Software Engineering - Product
quality, ISO/IEC 14598 Software engineering –
Product evaluation and ISO/IEC 15939 Information
technology – Software measurement process frame-
work. At the time of writing - February 2002, only
ISO/IEC 14598 is fully issued in its final form but
sufficient material has now published to be con-
structively used within a measurement programme.
The incomplete standards are sufficiently advanced to
enable a workable process structure to be established.
The target dates for full publication are as follows:

• ISO/IEC 9126, which will eventually comprise an
International Standard, three Technical Reports
and several guidance documents, should be
completed in 2002

• ISO/IEC15939 should be available in 2002.

One of the purposes of this document is to introduce
software developers, maintainers and users to the
contents and use of these standards and to relate them
to ISO 9001:2000, the TickIT Guide and good
software engineering practice. Significant changes in
the content of any of the referenced standards will be
addressed in further updates of this document.

In the following sections, there is a brief summary of
each of these standards. Other standards relevant to
software measurements are described in Appendix C.
The intent is to place these documents in a consistent
software-orientated framework and to indicate to users
those that are the most appropriate to their needs.
Strictly speaking, none of these standards is vital to the
generation and use of effective software measures, but
detailed study of their content will add considerably to
the understanding of the overall processes and details.
This guide sets out a clear framework to encourage
software managers and quality personnel to set up
suitable processes; the standards themselves will
complete the detail.

2.2.1 ISO/IEC 9126 Software Engineering -
Product quality

This standard has undergone a major revision since the
1991 edition. Not only has it been expanded into four
sections but the processes for handling measurement

data have been transferred to another standard,
ISO/IEC 14598, as explained below.

ISO/IEC 9126 deals with several important aspects of
quality measurements. The first is the development
framework and the relationships of product quality to
the development lifecycle. Concepts of quality in
software change as development progresses, for
example, Required Product Quality is as specified in
the user requirements, Design Quality relates to the
product as built and Quality-in-Use deals with the
product as seen by users. Quality-in-Use generally
depends on external measurements, whereas Design
Quality tends to be focused on internal parameters. The
four principal parts of ISO/IEC 9126 deal with the
following topics:
• Part 1: Quality model - provides an introduction

to the concepts and lays out the framework for the
other parts.

• Part 2: External metrics - deals with external
measurements made when validating the software
in a system environment.

• Part 3: Internal metrics - deals with internal
measurements made during the development
phases.

• Part 4: Quality-in-use metrics - deals with user
perception and acceptance of the software.

Mappings between internal, external and quality-in-use
measurements need to be defined by the developing
organization; these will never be absolute, but can be
developed into a usable set of quality parameters.

Product (that is software) quality can be measured
internally by static measures such as compliance with
coding standards and program structure. External
measures usually involve measurement of the software
in use or under test, for example, its performance,
ability to recover from errors, and ease of use. So, if
quality-in-use (what the customer sees) is taken as the
prime objective, product quality built in during
development becomes a direct contributor. Product
quality in turn is directly influenced by the quality of
development processes. This is the concept used in
ISO/IEC 9126 to support the quality model.

Six characteristics go into describing the overall quality
model in ISO/IEC 9126:

• Functionality - the features the product delivers,

• Usability - how easy and effective operators find
the product in use,

• Reliability - the confidence that may be held in the
product’s continued and accurate operation,

• Portability - whether or not the software can be
effectively ported to another environment,

Next column

Getting the measure of TickIT
February 2002

Page 3
© BSI 2002

• Efficiency - an assessment by some defined
criteria as to whether the software makes adequate
use of resources,

• Maintainability - how easy the software is to
update or modify.

Each of these characteristics is further divided into sub-
characteristics, for example, efficiency comprises time
behaviour and resource utilization, and reliability
covers maturity, fault tolerance and recoverability.
Obviously, not all characteristics will be applicable in
all situations and once again it is up to the developer,
user, acquirer, or possibly evaluator to consider what
measures affect the quality-in-use criteria.

Quality-in-use characteristics include the following
four topics:

• Effectiveness - enabling users to achieve specified
goals with accuracy and completeness,

• Productivity - the expenditure of resources against
benefits achieved,

• Safety - levels of risk of harm to people, business,
property or the environment,

• Satisfaction - the capability of the software to
satisfy user needs.

2.2.2 ISO/IEC 14598 Information technology
- Software product evaluation

Products, even software products, are only part of the
story. It is also necessary to consider measures of the
processes used to design, build, test and generally
control the product. Here, ISO/IEC 14598, in con-
junction with ISO/IEC 12207 Information technology -
Software life-cycle processes and ISO/IEC TR 15504
Information technology - Software process assessment,
are the most relevant. For software products, ISO/IEC
TR 15504 identifies those process-related measure-
ments and activities required to provide quality.

The standard is in six parts and provides guidance from
the perspectives of developer, acquirer and evaluator:

• Part 1: General overview

• Part 2: Planning and management
This covers the development of measurement
plans and the planning and development of
evaluation activities.

• Part 3: Process for developers
This covers planning and evaluation of internal
and external measures for ensuring product quality
is incorporated at the development stage.

• Part 4: Process for acquirers
This covers aspects of quality of use to purchasers
and users of software products.

• Part 5: Process for evaluators
This covers the establishment of evaluation
requirements, the specification, design and
conduct of the evaluation activities and finally the
evaluation report.

• Part 6: Documentation and evaluation modules
This deals with the packaging of quality aspects
dealing with specific module evaluation tech-
niques. Also, it allows the complexity of dealing
with measurement assessments to be managed
effectively.
So, for example, a measurement technique as
described below, say requirements traceability, is
identified and scoped, inputs and analysis are
defined, and the report format is described.

The six parts provide a general framework plus
supporting information. The contents of this standard
are extended further later in this document.

There is another project, SQuaRE - Software product
Quality Requirements and Evaluation, which is at a
very early stage. This aims to consolidate the ISO/IEC
9126 and ISO/IEC 14598 standards with additional
framework and guidance material.

2.2.3 ISO/IEC 15939 Information technology
- Software measurement process
framework

This identifies the essential requirements for a
measurement programme within a process improve-
ment activity, as defined in ISO/IEC TR 15504, using
the terminology of ISO/IEC 12207. It describes an
iterative improvement loop with four key process
areas:

• establishing and maintaining management
commitment,

• planning the measurement processes,

• performing the measurement processes,

• evaluating measurements.

Gradually, one can begin to see to see how all the
various software engineering standards under develop-
ment fit together and can be utilized to form a coherent
measurement strategy.

However, ISO standards are not the only potential
source of information. The Application of Metrics in
Industry (AMI) guide, for example, provides valuable
assistance in devising a measurement programme. The
Software Engineering Institute have a series of
measurement handbooks and another set of guides,
Practical Software Measurement (PSM), sponsored by
the US DoD are also available. Further details are
provided in Appendix D.

Next column

Getting the measure of TickIT
February 2002

Page 4
© BSI 2002

Now that these tools are available, it is possible to start
to construct a measurement and improvement prog-
ramme that is both compatible and compliant with
TickIT and ISO 9001:2000.

3. Developing and applying a
measurement programme
within an ISO 9001-compliant
quality management system.

This section deals with the general criteria for a
measurement programme and how this can relate to
specific ISO 9001:2000 clauses. Subsequent sections
explain the methods and terminology derived from the
standards in more detail.

3.1 Measurements and quality
objectives

ISO 9001:2000 requires that quality objectives shall be
measurable - this is the first basic requirement for an
organization. Measurement issues at this level may or
may not relate to specific software characteristics -
other corporate goals are equally applicable. However,
whatever product and process measurements are
applied, they should be compatible with and lend
support to the quality objectives. The Quality Policy
needs to provide a suitable framework for the
objectives to be established and reviewed, and also
needs to identify management commitment for
compliance and improvement. In other words, for the
commitment to improvement to be real, relevant
objectives for a software organization, including
software quality, must exist and be measured.

Taking measures from every project may not be the
most appropriate approach - at least initially. It is better
to focus on those activities that can be shown to be
potential beneficiaries of the measurement process,
where the gains can be quantified against the additional
expenditure made.

3.2 Measurement planning

It is vital that a measurement programme enjoys the
full support of senior management with clearly
identified budgets and personnel time allocated. It is
not sufficient just to state this as policy; it also needs to
be demonstrated in practice. Management commitment
and the provision of adequate resources are key
requirements of ISO 9001:2000.

3.2.1 What needs to be covered

In order to demonstrate a coordinated approach, there
should be a high level plan dealing with software
measures – referred to here as a Measurement Plan -

which in turn is supported and referenced by project or
other quality plans as appropriate.

The planning of measurement activities should be
evident in development projects and support activities.
Quality plans for such activities should identify not
only what measures are to be taken - consistent with
the organizations objectives - at what stages and how,
but also how they are collated and fed back into an
improvement process. It should therefore be evident
from the plan that the measures collected are part of
this framework and provide some tangible benefit - not
just collected because they seem to be the easiest
measures to make.

Aspects covered by the Measurement Plan would
typically be:

• the rationale for the measurement activities and
what types of project are to be addressed, (for
example new developments, upgrades or support
activities) - there must be a clear overall purpose
for conducting a measurement programme, which
must also relate to the organizational quality
objectives, and a senior management sponsor
should be identified,

• an overview of all the measurement methods to be
employed, together with collation activities - this
can be a combination of review, test, assessment,
report feedback as well as statistical relationships,

• any general normalization methods to be adopted -
there should also be some reference to the
measurement scales employed (see Appendix A),

• the overall framework within which each measure
fits - this would typically address the internal,
external and quality-in-use measures discussed in
ISO/IEC 9126 and there should be clear and
demonstrable correlation between these different
parameters, with limitations of the approach
identified (however, the characteristics identified
in ISO/IEC 9126 should not necessarily be
considered definitive for all situations - some may
not be relevant for all products, or additional ones
could be introduced),

• the identification of an improvement programme
including planned reports and reviews - this may
in fact be part of the same document.

3.2.2 A phased approach

The approach to measurement planning outlined within
the AMI framework and the ISO/IEC TR 15504 and
15939 documents focuses on the Deming Plan-Do-
Act-Check (PDCA) approach - as does ISO 9004:
2000. For software, an interpretation of this approach
could be as follows:

Next column

Getting the measure of TickIT
February 2002

Page 5
© BSI 2002

Phase 1: Requirements assessment phase

Initially, one needs to identify the organization’s needs,
business drivers or goals, for example, general
improvements in software quality, time to market, and
development and support costs. At first, such goals are
likely to be somewhat nebulous and difficult to
quantify but, as the analysis begins, sub-goals, which
are quantifiable, can be developed. Once again, refe-
rence to defined quality objectives should be made.

The model provided by ISO/IEC 9126 can help with
this: for example, the need for maintainability breaks
down into analysability, changeability, stability,
testability and compliance. After some initial analysis,
one can begin to apply quantifiable parameters to these
characteristics. Ensuring that the module structure
matches functional requirements, defined processing
paths through code, and identifiable equivalence
classes for both test data and functions can support
testability.

The first draft of the Measurement Plan can now be
drawn up. This should be reviewed by the parties
concerned and agreement on these basic objectives
reached before the next stage.
Phase 2: Analysis phase

Within this phase, the sub-characteristics and
accompanying goals are fleshed out with identifiable
measurements, current product and processes are
assessed for compliance to these requirements,
benchmarks are defined and a metrics database - at
least in structure – established. The Measurement Plan
is extended to cover these aspects.

Phase 3: Metricate phase

With the basic metrics identified, a template for more
focused measurement can be developed. Process and
product assessments are now taken based on this
template, so it is possible to see a means of feeding
back requirements into the measurements processes.
The Measurement Plan now includes assessment
schedules and detailed measurement methods.

Phase 4: Improvement Phase

Comparison of measurement results with the initial
goals can now be made. The Measurement Plan is
updated to focus on those areas where improvement is
needed to meet the defined goals. The Requirements
Assessment phase may now be re-visited, comparing
and refining goals and building a quantified quality and
capability profile for the organization.

Figure 1 provides a diagrammatic view of this process
which, to be effective, needs to cover both the product
and the processes needed to develop and support that
product.

3.2.3 Some pacing issues

The extent of the measurement activity across the
organization needs to be considered carefully.
Individual projects are often too time or cost sensitive
to allow resources to be committed to measurement
activities in what initially amounts to an experiment.
Although the use of measurements will ultimately
permit closer monitoring and improved quality and
productivity on such projects, it is probably better to
focus initially on less critical areas. The skills should be
built up gradually, to limit the effort expended until the
benefits are clear. The most important action is to make
a start!

Throughout the processes described above, it is
important to identify and retain the support of senior
management who are sponsoring the activities, this is
one of the key activities identified in ISO/IEC 15939.
Tangible benefits may not become apparent until the
second iteration or even later, so some act of faith is
often needed. The Measurement Plan should be
reviewed and updated frequently and measures made
of the resources expended as well as the software and
process aspects. This information will be needed later
to put the final benefits in perspective.

3.2.4 Operating the Plan

The Measurement Plan, shown in Figure 1, is key to
the programme. It is continuously updated and
improved throughout the cycle and should be clearly
referenced in the quality plans of any projects forming
part of the initiative. The diagram also identifies the
metrics database described above. It is important that a
consistent and accessible structure for collecting
measurements is established at an early stage. This
repository provides a consistent recording structure and
assists in normalization of results.

The Measurements Plan will also need to cover those
processes that contribute to measurements collection,
such as specification review, software inspection,
testing, rework etc. The standard procedures covering
these processes will need to accommodate the new
requirements.

Next column

Getting the measure of TickIT
February 2002

Page 6
© BSI 2002

3.3 Measurements and ISO 9001:2000
requirements

It is now possible to see how a measurement and
associated improvement programme fits in with ISO
9001:2000 requirements. Each relevant clause will be
considered in turn.

3.3.1 Quality management system – general
requirements (clause 4.1)

This clause requires the organization to monitor,
measure and analyse its quality management processes.
This could also be interpreted as including any out-
sourced processes affecting product conformity. A note
explains that the set of processes needed for the quality
management system should include those for process
measurement.

3.3.2 Control of records (clause 4.2.4)

Records of, for example, test results, problem reports,
change requests and audit reports are all valuable and
the related procedures should contribute to and feature
these as part of the measurement programme. It is
important to ensure that database measurements may
be traced to the originating records.

3.3.3 Quality policy (clause 5.3)

Quality policy must include a commitment to con-
tinually improve the effectiveness of the quality
management system.

3.3.4 Planning – quality objectives
(clause 5.4.1)

This clause states that quality objectives must be
measurable and consistent with the quality policy and
product requirements. Examples of measurable object-
ives might be process capability levels or specific
targets for product characteristics such as software
usability, reliability or functionality. Quality objectives
would be expected to be consistent with any
improvement plan. Note that measurable quality
objectives also apply to product.

3.3.5 Competence, awareness and training
(clause 6.2.2)

The training necessary for measurement collection and
analysis techniques should be identified and incorp-
orated into a training plan. Appropriate training records
need to be kept.

 Figure 1: Measurement planning process

Business goals
ISO 9126

Software Engineering –
Product quality

ISO 14598:2 Planning and management
Benchmark requirements

Assessment results

Assessment template
ISO 14598:3 Process for

developers

ISO 14598:6 Documentation
and evaluation models

ISO 14598 Software product
evaluation

Initiate programme

Requirements
assessment

Analysis

Measurements
Plan Measurements

Database

Metricate

Improvement

Business goals
ISO 9126

Software Engineering –
Product quality

ISO 14598:2 Planning and management
Benchmark requirements

Assessment results

Assessment template
ISO 14598:3 Process for

developers

ISO 14598:6 Documentation
and evaluation models

ISO 14598 Software product
evaluation

Initiate programme

Requirements
assessment

Analysis

Measurements
Plan Measurements

Database

Metricate

Improvement

Getting the measure of TickIT
February 2002

Page 7
© BSI 2002

3.3.6 Planning of product realization
(clause 7.1)

Here, there is a reference to product quality objectives
and requirements and, by referring back to 5.4.1, the
clear statement that these must be measurable. The
outcome of this activity would normally be a quality
plan addressing the measurement activities necessary
to achieve product realization. (Note that product in
ISO 9001:2000 terms relates to hardware, software,
processed material and services.)

3.3.7 Review of requirements related to
product (clause 7.2.2)

Performance criteria, for example efficiency, reliability,
and specific performance parameters, may be built into
a purchase specification, in which case, measurements
may be needed to demonstrate eventual contract
compliance. It follows that the implications of
performance measurements should be assessed when
contractual requirements are reviewed. Performance
measurements from previous contracts may be used to
check the feasibility of the contractual terms before any
commitment is made to supply the product.

3.3.8 Design and development planning
(clause 7.3.1)

Design processes need to incorporate requirements for
measurement collection (initially under quality plan-
ning as described above, but eventually incorporated
into the procedures). For example, design specifi-
cations need to demonstrate compliance to quality
characteristics and sub-characteristics (as per ISO/IEC
9126), and design reviews and code inspections need
to quantify appropriate measures. Design changes need
to take into account measurement requirements.

3.3.9 Design and development verification
(clause 7.3.5)

Product verification may, for example, address design
criteria. For software this could include coding
structure and provisions for testability. Measures can
be designed to quantify these aspects.

3.3.10 Design and development validation
(clause 7.3.6)

Validation must be performed to assure that the
product is capable of fulfilling requirements.
Measurement of in-use aspects of the product, such as
functionality, can help to provide this assurance.

3.3.11 Control of production and service
provision (clause 7.5.1)

This states that production and services must be
planned and carried out under controlled conditions,

which include the implementation of monitoring and
measurement (of product and services). Measurements
collected from servicing activities may be important for
certain organizations to achieve their goals and it
should be evident (in the procedures or via quality
planning) that this is so.

3.3.12 Validation of processes for production
and service provision (clause 7.5.2)

Production or service processes must be validated
where it is not possible to subsequently measure or
monitor their output. This means that the performance
of such processes must be predicted, for example, by
performing process capability measurements. This is
applicable in areas such as disaster recovery where pro-
cess deficiencies only become apparent after delivery.

3.3.13 Identification and traceability
(clause 7.5.3)

This clause requires the organization to identify pro-
duct status with respect to monitoring and measure-
ment requirements. For a software development orga-
nization, effective configuration management, linking
measurement results to identifiable product baselines,
is required. A degree of traceability is required between
the product measurements in the database and versions
of the product. There is little point making detailed
measures if they cannot be related to specific versions
of the product. This is particularly relevant when
software is complex, when very small changes can
have a dramatic impact. The extent and method of
handling this aspect of configuration control should be
described in the Measurement Plan, the Configuration
Plan or individual quality plans.

3.3.14 Control of monitoring and measuring
devices (clause 7.6)

This relates to the tools for monitoring and measure-
ment and would normally be associated with physical
product and measurement devices. The clause makes
clear, however, that the suitability of software (whether
as a component of the measuring device, or a stand
alone tool) must be confirmed. For software measure-
ment tools, appropriate methods of data collection and
presentation need to be used, tools must be compatible
with the software or system being measured and the
results must be validated.

3.3.15 Measurement, analysis and improve-
ment – general (clause 8.1)

Organizations must plan and take measurements to
ensure conformity of both the product and the quality
system and to achieve process improvement.
Appropriate measurement methods and/or statistical
techniques must be identified and used. This implies an

Next column

Getting the measure of TickIT
February 2002

Page 8
© BSI 2002

organization-wide planning activity linked to process
improvement rather than a focus on specific projects.

3.3.16 Customer satisfaction (clause 8.2.1)

Customer satisfaction, (or perception of satisfaction),
must be one of the performance measures made when
assessing the quality management system. The
methodology used must be defined, that is the
parameters to be measured and the methods of data
collection and analysis. A method of determining
customer satisfaction could be derived from some of
the measures employed for measuring product-in-use
quality, (as described in ISO/IEC 9126 part 4).

3.3.17 Internal audit (clause 8.2.2)

The collection and assessment of product
measurements would normally be carried out
independently of internal quality audits. However,
measurements related to process assessment need to be
coordinated, so both the overall and detailed planning
for internal audit should cater for measurement
requirements. Furthermore, whereas compliance audits
are generally based on random sampling, measurement
sampling needs to be on a more statistical basis. These
factors should be considered during audit planning.

3.3.18 Monitoring and measurement of
processes (clause 8.2.3)

Measurement of processes should be applied, where
applicable, to demonstrate achievement of planned
results. This relates to all of the software primary,
organizational and support processes that are appli-
cable to the organization, as defined in ISO/IEC 12207,
as well as any non-software processes covered by the
quality management system.

3.3.19 Monitoring and measurement of
product (clause 8.2.4)

Product requirements must be verified by measurement
at appropriate stages of product realization in
accordance with the product realization plan as
described in clause 7.1 A quality model approach
similar to that described in ISO/IEC 9126 is therefore
applicable where the measuring activity is integrated
into the development lifecycle phases. In essence, this
is the key ISO 9001:2000 clause relating to the purpose
of this document. Where software is the product,
quality characteristics of that product, as described in
the ISO/IEC 9126 model, provide a structured means
of measurement and therefore a statement of its fitness
for purpose.

3.3.20 Analysis of data (clause 8.4)

Data must be collected and analysed to determine the
suitability and effectiveness of the quality management

system and to allow improvements to be identified. As
a minimum, this information must include: customer
satisfaction (or dissatisfaction), conformance to pro-
duct requirements, product and process characteristics
and trends, and supplier performance. Some form of
measurement activity is therefore required in each of
these areas.

3.3.21 Continual improvement (clause 8.5.1)

This clause requires the organization to continually
improve the effectiveness of the quality management
system in line with the declared quality policy and
quality objectives. Use should be made of audit results,
data analysis, corrective and preventive actions and
management review activities. Improvements in pro-
cesses should be backed up by quantitative measures.

3.3.22 Preventive actions (clause 8.5.3)

The collection, analysis and feedback of measurement
results are an important aspect of both identifying
preventive action requirements and demonstrating that
that the actions taken have been effective. The data
should demonstrate, for example, how design and
testing defects can be reduced by measurement
analysis, and how design processes can benefit.

4. Using software measurements
This section looks at specific processes for handling
software measurements from the viewpoint of the three
categories of software users – the developer, the
acquirer and the evaluator, or assessor. Using the
concepts described in the new standards, it discusses
how these can be incorporated into both an ISO
9001:2000-compliant quality management system and
the Measurements Plan described above. There are
very close interrelations between these three categories,
and developers, in particular, would benefit by
considering all three aspects. Figure 2 shows how
simple relationships between measurement and
conventional project documents might be established.

The range of software activity and the way software
affects business and everyday life is now so extensive
that no general guide can hope to address all aspects.
This is as true for measurements as any other software
engineering activity. The processes described here
make no attempt to describe any one particular type of
software development process or supporting environ-
ment. Therefore, users of this guidance should consider
how to incorporate the following generic processes
into their own specific environment, bearing in mind
the identified improvement objectives.

Next column

Getting the measure of TickIT
February 2002

Page 9
© BSI 2002

4.1 Measurement processes for
developers

Development, in this context, applies to initial product
development, incorporation of third party products and
maintenance by product support personnel. ISO/IEC
14598 part 3: Process for developers, is a key
information source.

Assuming the fundamental quality characteristics have
been identified and the necessary measurement
framework established, a number of key process stages
can then be defined.

4.1.1 Organization

The organizational aspects of development and support
need to be addressed as part of the overall quality
system and Measurement Plan as far as they are appro-
priate. ISO/IEC 14598 Part 2: Planning and manage-
ment, adds support in this area and explicitly covers:

• preparation of a policy statement,

• definition of organizational and improvement
objectives,

• identification of technology,

• assignments of responsibilities,

• identification and implementation of evaluation
techniques - both for developed and acquired
software,

• technology transfer - training, data collection,
tools,

• collation and management of improvements
within the organization.

Much of the above will have been covered already - in
a general sense at least - by ISO 9001: 2000. Further
enhancements should feature in the Measurement Plan.

4.1.2 Project planning and quality
requirements

Again, normal ISO 9001:2000 and TickIT require-
ments apply. A development or support life cycle
needs to be established and documented in quality
planning or other documents. Using the software
quality requirements model, any conflicts should be
identified and resolved and a feasibility analysis
conducted. It is vital to assess whether the product and
measurement requirements are technically feasible,
reasonable and achievable (given budget and time
constraints), complementary and verifiable.

4.1.3 Specifications

Here, the developer maps quality requirements, both
external and internal, to the specification. So, for
external requirements, say interoperability with other
systems over specified interfaces, the necessary internal
characteristics are identified in terms of system
attributes and metric scales with targets then defined.
In the case of interoperability, these might be the

Figure 2: Measurement relationships between project documents

Feasibility
Review

Design
Review

Test
Results

User & Functional
Specifications

Design
Specification

Test
Plans

Quality
Plan

Project
Plan

Evaluation
Specification

Evaluation
Plan

Evaluation
Results

Measurement
Plan

Quality
requirements

Schedules

Policies

Metrics Evaluation Modules

Responsibilities
Evaluation

requirements

Measurement
results

Feasibility
Review

Design
Review

Test
Results

User & Functional
Specifications

Design
Specification

Test
Plans

Quality
Plan

Project
Plan

Evaluation
Specification

Evaluation
Plan

Evaluation
Results

Measurement
Plan

Quality
requirements

Schedules

Policies

Metrics Evaluation Modules

Responsibilities
Evaluation

requirements

Measurement
results

Getting the measure of TickIT
February 2002

Page 10
© BSI 2002

degree of compliance with the interfacing standard,
provision for tracking data across an interface, or the
verified ability to work with multiple variants of an
external system.

It is important, also, that a consistent measurement
environment is defined, so appropriate and repeatable
conditions need to be identified. Once again, the
feasibility analysis should be reviewed and any
dependencies between attribute values identified.

The outcome of this phase in terms of measurement
requirements should be some kind of mapping
between requirement specifications, external quality
requirements, corresponding internal quality require-
ments and finally the specified attributes and their
metric scales and target values that contribute to the
quantification of the software quality. This may seem
like a ‘per project’ or ‘per product’ approach and,
initially, that may well be the case. As the process
matures however, specific product measurements need
to be placed within the overall organizational frame-
work so that consistent results can be analysed.

4.1.4 Design and planning

As part of design planning, the procedures required for
data collection and analysis need to be defined. So, the
plan would include scheduling, allocation of responsi-
bilities, use of tools, databases and any specialist
training required. The measurement precision and any
statistical modelling techniques, including input data,
normalization and sampling strategies, should be
specified (see ISO/IEC 14598-6 regarding evaluation
modules). Design planning and the procedures should
also consider how the results of measurement might
impact on development. So, contingency actions, the
need for additional (or possibly less or more focused)
review and testing, and the identification of improve-
ment opportunities should all be considered.

4.1.5 Build and test

During the build and testing phases, actual mea-
surements are collected, appropriate degrees of analysis
performed and necessary actions taken. The emphasis
during software coding will be on the internal metrics
and their attributes, since this is the stage at which they
can be measured and their results influence the external
characteristics, which are directly measured during the
testing and any evaluation stages. So, these aspects of
the measurement activity need to be demonstrated in
the design reviews and testing plans. At each stage of
development, a picture is built up, first focusing on the
internal and then the external quality characteristics
that define overall product quality and that both
complement and are validated by the test results and
user experience.

As a final project phase, an overall review should be
conducted to determine the overall effectiveness of the
measurement collection exercise, to identify costs
against gains, to establish the validity of the metrics
used and to identify where benefits could be obtained
on future projects. Where the activity is a support
function, the results of this review can be fed back
directly into future product releases.

4.2 Measurement processes for
acquirers

Acquirers would normally be purchasers of complete
software packages, either developed to specific require-
ments (bespoke) or pre-developed for a more general
market (commercial off-the-shelf - COTS – products).
They could, however, be developers wishing to
integrate standard products into their own software
design, developers looking to subcontract a part of
their development activity to a third party, or
developers wanting to use specific software tools.

ISO/IEC 14598-4 Part 4: Process for acquirers, pro-
vides a key reference source for developing this area. It
is based on the acquisition process of ISO/IEC 12207
and hence relates to ISO 9001:2000 via the mapping
provided in the TickIT Guide. There is no reason, how-
ever, why the basic components for this process cannot
be incorporated into a development project’s testing
and validation activity; Figure 2 extends this idea with
simple relationships between documents and records.

The basis of the process relies on establishing integrity
levels and, here, ISO/IEC 15026 Information techno-
logy - System and software integrity levels, provides a
useful model.

In ISO/IEC 14598-4, four stages are defined and these
are discussed below:

4.2.1 Establishment of requirements

The scope of the evaluation needs to be established.
Once again, the requirements for software quality
defined in ISO/IEC 9126 can be used as a starting
point, but other aspects such as cost and regulatory
compliance may also need consideration. These are
matched to integrity requirements with priority levels,
reporting requirements and possibly thresholds. The
timing of the evaluation needs to be consistent with
objectives; too early an assessment on a development
project will not provide a complete picture, whereas
too late an assessment may be of limited use.

4.2.2 Evaluation specification

In drafting the Evaluation Specification, the following
should be considered:

Next column

Getting the measure of TickIT
February 2002

Page 11
© BSI 2002

• the quality requirements to be evaluated,
correlated to quality-in-use and external metrics,
with priority and acceptance thresholds defined,

• scope of coverage and test cases where applicable,
reference to evaluation modules (ISO/IEC
14598-6)

• measurement collection methods, information
required and method of analysis.

ISO/IEC 14598-4 gives additional guidance for deve-
loping the Evaluation Specification, including methods
for recording and correlating data.

4.2.3 Evaluation design

The type of evaluation will depend on the type of
software being evaluated. Software under development
may be covered at discrete points in development, or
on completion. Off-the-shelf software, obviously, is
more restricted. In either situation, some form of plan-
ning is needed. An Evaluation Plan needs to consider:

• needs for access to product documentation,
development tools and personnel,

• costs and necessary expertise required,

• evaluation schedule and contingency arrange-
ments, key milestones and criteria for evaluation
decisions,

• reporting methods and tools, procedures for vali-
dation and standardization over future projects.

Once again, ISO/IEC 14598-4 provides fuller details
and support material.

4.2.4 Evaluation execution

It goes without saying that the evaluation needs to be
formally recorded, and normal ISO 9001:2000
requirements for quality planning apply. For some
evaluations, this could simply be a record in a logbook;
others will need to cover the full scope of project
recording including:

• the results themselves and traceability to the
product and its configuration information,

• analysis, results and decision records,

• problems, measurement limitations and any
compromises made against original objectives,

• conclusions, both of the evaluation results and on
the methods employed.

4.3 Evaluating software measurements

ISO/IEC 14598-5 Part 5: Process for evaluators, deals
with the systematic evaluation of software using the
measurement principles laid out in other parts of this
standard.

Principal objectives of evaluation include:

• repeatability and reproducibility - assessment of
the same software, using the same measurement
criteria should provide repeatable results, whether
or not the same evaluators are used,

• impartiality and objectivity - there should be no
bias of the results, which should be factual within
the confines of the evaluation requirements.

It should be noted that evaluations based on measure-
ment criteria are fundamentally different from internal
ISO 9001 audits, which are based on sampling against
conformance requirements. Evaluation as defined here
is a process of taking and analysing measurements.

It is clear that requirements for evaluation follow the
same basic processes as defined above in those for
acquisition. A change of bias is evident in the fact that
issues of legal requirements, accessibility and confi-
dentiality are addressed. Similarly, there are references
to measurement tool requirements. Specific evaluation
requirements to the four stages are summarized below.

4.3.1 Evaluation requirements

Requirements should additionally define:

• the extent of coverage,

• the evaluation objectives and methods of
reporting,

• the evaluator qualifications and independence
required.

4.3.2 Evaluation specification

Specifications should additionally cover:

• definition of the scope and format of the metrics
used, identifying how these may be derived from
the product requirements,

• identification of non-deterministic measurements
to ensure that the required levels of repeatability
and objectivity are obtained,

• identification of any methods of cross-correlation
of the measurement results.

Three sub-activities are identified concerning the
Evaluation Specification:

• analysing the product description – identifying
these key components for evaluation,

• specifying the measurements to be performed -
identifying product components in terms of the
characteristics and sub-characteristics needed for
quality measurement - this should result in a
formal metric for the evaluation,

Next column

Getting the measure of TickIT
February 2002

Page 12
© BSI 2002

• verifying the resulting specification against the
evaluation requirements - a cross check of
produced metrics against requirements, ensuring
sufficient and complete compliance and ensuring
the proposed measurements are consistent with
the current state of the art and software
engineering standards.

4.3.3 Evaluation plan and evaluation
modules

Coordinated measurement activities are a key feature
of effective evaluation and here the plan needs to
provide an evaluation schedule that provides optimum
information when conducted during development. This
needs careful and experienced planning, taking into
account the development lifecycle, development stage
and users needs. It is recommended that evaluation
modules, as defined in ISO/IEC 14598-6, are used to
provide a consistent and repeatable reporting format.

Evaluation modules are a key component of ISO/IEC
14598 and a means of handling measurement
complexity. In particular they provide:

• visibility of the information needed to assess
specific quality requirements,

• documentation of the necessary interfaces with
measurement tools.

ISO/IEC 14598-6 deals with the documentation
requirements and breaks evaluation modules into the
following six components:

• Introduction - this covers document control,
relationships with other documents, technical
requirements and a rationale for the module,

• Scope - this relates to the quality characteristics, or
sub-characteristics that are addressed, the level of
evaluation (taking into account the importance of
the characteristic, the evaluation techniques used,
including any necessary theory) and the appli-
cability of the module,

• References,

• Required definitions,

• Inputs required - data to be collected and metrics
to be calculated,

• Information on interpreting results.

4.3.4 Evaluation results

This stage addresses the generation of the evaluation
report including independent review of evaluation
results. Normally the final report would be preceded by
a draft so that the personnel involved with the product
can provide feedback on the evaluation.

5. Taking measurement concepts
further

The discussion in this document has been based,
primarily, on the measurement of identified quality
characteristics as described in ISO/IEC 9126. The
ISO/IEC Joint Technical Committee, JTC1, have also
developed a number of technical reports (normally
regarded as embryonic standards) dealing with the
further classification of software and using functional
size measurement to determine internal and external
processing and interfacing requirements. ISO/IEC TR
12182 Information technology - Categorization of
software identifies sixteen classifications. These are
further developed, using the basis of functional
measures in ISO/IEC TR 14143 Information
technology - Software measurement - Functional size
measurement, particularly in part 5, which deals with
the determination of functional domains. An example
of this would be to assign a measure of defect density
to particular characteristics based on size measure-
ments, for example, the defect density of interface
processing functions. This in turn could relate to
common characteristics and eventually to quality
measures as described in ISO/IEC 9126.

6. The future
The revised ISO 9001:2000 has placed a much greater
emphasis on processes and their continued
improvement, and on the quantitative assessment of
product.

Organizations now need to show how they manage the
quality of their product; producing software that is
reviewed and tested solely against the functional
requirements will no longer be sufficient. Identification
of product quality characteristics and their repeated and
systematic measurement and feedback in the manner
described in this document will, in due course, become
an accepted aspect of software development.

As mentioned earlier, the ISO/IEC 9126 and ISO/IEC
14598 standards, upon which a large part of this guide
is based, are themselves the subject of further
development. BRD/3/1 will therefore monitor these
developments and update this document as necessary.

A further, more detailed guide by the same author is in
preparation and will be available from BSI. This is
entitled "Quantitative software management - software
measurement methods". It deals with the topics
addressed here and treats the actual processes of
measurement in greater depth, but with less emphasis
on ISO 9001:2000 and TickIT.

Next column

Getting the measure of TickIT
February 2002

Page 13
© BSI 2002

Appendix A - Measurement
terminology
The following is a selection of some of the common
terminology used in software measurement. References
are given where these terms are taken from ISO/IEC
standards.

• Direct measure: A measure of an attribute that
does not depend upon a measure of any other
attribute (ISO/IEC 14598-1).

• External measure: An indirect measure of a
product derived from measures of the behaviour
of the system of which it is a part (ISO/IEC
14598-1).

• External quality: The extent to which a product
satisfies stated and implied needs when used
under specified conditions (ISO/IEC 14598-1).

• Indicator: An indirect measure that can be used to
estimate or predict another measure (ISO/IEC
14598-1).

• Indirect measure: A measure of an attribute that
is derived from measures of one or more other
attributes (ISO/IEC 14598-1).

• Internal measure: A measure derived from the
product itself, either direct or indirect; it is not
derived from measures of the behaviour of the
system of which it is a part (ISO/IEC 14598-1).

• Internal quality: The totality of attributes of a
product that determine its ability to satisfy stated
and implied needs when used under specified
conditions (ISO/IEC 14598-1).

• Measure (noun): The number or category
assigned to an attribute of an entity by making a
measurement (ISO/IEC 14598-1).

• Measurement attribute: A measurable physical or
abstract property of an entity.

• Measurement scale: A scale that constrains the
type of data analysis that can be performed on it.
Generally there are four basic measurement scale
types to consider:

− Nominal - values are categorical, that is they
have no measurable purpose other than
categorizing some parameter, for example,
numbers applied to a football teams players,

− Ordinal - values have a ranking, but other than
order, no relative relationships can be drawn,
for example, assigning defects to a severity
level,

− Interval - values have defined distances
between them, such as elapsed time, but no
zero value is defined,

− Ratio - values include a zero, such as electrical
power measures, which can be multiplied and
divided.

A fifth scale - absolute - is also sometimes
applied, which is similar to ratio and allows
equality with other scales of the same type.

• Measurement: The process of assigning a number
or category to an entity to describe an attribute of
that entity.

• Metric: A measurement scale and the method
used for measurement.

• Quality-in-use: The quality that is perceived by
users when the software is actually used in the
users' environment. It can be measured by
effectiveness, task efficiency and satisfaction
(ISO/IEC 9126 -1).

• Quality model: The set of characteristics and the
relationships between them that provide the basis
for specifying quality requirements and evaluating
quality (ISO/IEC 14598-1).

• Rating level: A scale point on an ordinal scale that
is anchored to a range of values on another
ordinal, interval or ratio scale measure (ISO/IEC
14598-1).

• Rating: The action of mapping the measured
value to the appropriate rating level - used to
determine the rating level associated with the
software for a specific quality characteristic
(ISO/IEC 14598-1).

Getting the measure of TickIT
February 2002

Page 14
© BSI 2002

Appendix B - A summary of
measurement techniques
This section gives a brief summary of some typical
measures that can be applied to software. The list is not
exhaustive, nor is it applicable in all circumstances.
The standard IEEE 982.1-1998 Standard dictionary of
measures to produce reliable software gives a much
fuller description of these measures.

Measurements in design

• Defect (or error) density - number of errors per
defined code size (usually K lines of code),
inspection measure.

• Cause and effect graphing - used to identify
incomplete or ambiguous requirements. This is a
combinational mapping of input conditions to
expected outcomes, a measure of design
completeness, once the ambiguities are resolved,
the design is considered complete.

• Requirements traceability - a measure of the
completeness of the design in terms of satisfied
requirements.

• Defect index - usually weighted by severity,
provides a measure of the correctness as the
software passes through design stages.

• Hours per defect detection - a measure of the
efficiency of the design review and code
inspection processes.

• Number of conflicting requirements - used to
detect conflicts by mapping inputs and outputs to
varying and conflicting requirements.

• Number of input and exit points per module -
measure of the complexity of modules, summated
over the product.

• Halstead complexity measure - determines the
relative complexity of code modules by measuring
the number of operands and operators in a
program.

Measurements in testing

• Fault density - number of faults found over a
specified period per defined code size (usually K
lines of code), test measure.

• Cumulative failure profile - graphical inter-
pretation of suitability of code for use based on
fault density at given security levels of failure,
may be used as predictive measure.

• Functional or modular test coverage - total
requirements measure over those tested.

• Error distribution - attempts to classify errors in
terms of lifecycle phase. Analysis helps to
determine where most development effort is
expended.

Measurements in support

• Fault days - period known faults remain in system
from creation until their removal.

Measurements in maintenance

• Software maturity index - a functional index
based on releases. Intended to show the maturity
progression of the software in terms of
functionality introduced as the product matures.

Getting the measure of TickIT
February 2002

Page 15
© BSI 2002

Appendix C - Other useful standards

ISO/IEC 12119 Information technology -
Software packages - Quality requirements
and testing

Although referenced by some of the other standards,
such as ISO/IEC 14598-5, which focus on the product
description, user documentation and programs, this
focuses on a different approach to quality
requirements. The product description, for example,
requires statements on functionality, reliability and
usability without the structured characteristics of
ISO/IEC 9126, although many of the details are
similar. The testing section discusses test pre-
requisites, records and test report requirements.

ISO/IEC 12207 Information technology -
Software life cycle processes

This is a key standard in the overall software
engineering framework, of which measurement
requirements form a part. It describes a compre-
hensive set of software processes under three main
categories: primary processes, supporting processes
and organizational processes. This structure is directly
utilized by most of the other standards described here,
in particular ISO/IEC TR 15504. The standard was
originally issued in 1995 and is currently being updated
with an amendment. It was intended principally as the
basis of a contractual relationship between parties
developing, acquiring and using software and is
intended to be tailored as required. It is supported by a
guide, ISO/IEC TR 15271.

ISO/IEC 14143 Information technology -
Software measurement - Functional size
measurement

This uses Base Functional Components (BFC) to
describe a sizing mechanism, which is independent of
technology, much like function points.

ISO/IEC 14756 Information technology -
Measurement and rating of performance of
computer-based software systems

This defines how user orientated performance of
computer based systems can be measured and rated. It
puts into a mathematical framework a mechanism for
consistently measuring both hardware and software
performance aspects of computer systems.

ISO/IEC 15026 Information technology -
System and software integrity levels

This standard establishes requirements for the deter-
mination of integrity levels for software and for
systems that use software. By identifying the require-
ments for system and software level determination, the
software integrity requirements can be determined. The
integrity level assigned is either the degree of reliability
of a mitigating function or a limit on the frequency of
failure, that is, the degree of confidence that can be put
on the overall system not to fail. Analysis of risk,
comprising three phases: risk analysis, risk evaluation
and control, is a key process in assessing integrity
levels; these reflect the worst-case risk associated with
the system.

As in the concept of ISO/IEC 12207, where a
contractual two party situation is identified, here an
independent integrity assurance authority is envisaged
with which the developer or user of the system
negotiates assigned integrity levels and the degree of
control required. Extensive references to IEC 60300-3-
9 (Dependability management - Part 3: Application
guide - Section 9: Risk analysis of technological
systems) are provided.

Overall the standard is an excellent example of how the
basic software processes in ISO/IEC 12207 can be
built onto and tailored for a specific need.

ISO/IEC TR 15504 Information technology -
Software process assessment

This is a nine-part work, (currently under revision),
dealing with capability determination, an assessment
framework, assessor qualifications and process imp-
rovement. It is currently issued as a Technical Report, a
precursor to becoming a full international standard, and
is intended to be a framework to which other capability
models, such as Bootstrap and the Capability Maturity
Model (CMM) comply. ISO/IEC TR 15504 also
includes its own assessment model but its use is not
mandatory, nor a pre-cursor to using and conforming to
the standard.

As indicated above, the assessment process in ISO/IEC
TR 15504 maps directly onto that found in ISO/IEC
12207 (in fact, it actually extends ISO/IEC 12207 in a
number of key areas). ISO/IEC TR 15504, which
originated from the SPICE project, is primarily
intended for organizations wishing to measure and
improve their own software processes rather than for
external evaluation, although such an approach is
entirely compatible and adopts a maturity scale, similar
to, but more complex than that used by the CMM.
ISO/IEC TR 15504 is specifically not intended to be
the basis of a certification scheme like ISO 9001.

Getting the measure of TickIT
February 2002

Page 16
© BSI 2002

BS 7925 Software testing

This standard deals principally with low level
component testing and describes many useful concepts
such as equivalence portioning, state transition testing
and cause-effect graphing, together with examples, as
well as the plans and documents involved. It comes in
two parts, vocabulary and component testing. It should
fit in well with quality requirements testing as
described in this document.

Getting the measure of TickIT
February 2002

Page 17
© BSI 2002

Appendix D - Reference material
In addition to the standards discussed above, the
following further reading material may be of interest:

AMI Handbook (Addison-Wesley, 1996, ISBN
0201877465)

FENTON and PFLEEGER: Software metrics - a
rigorous and practical approach (PWS Publishing
Company, ISBN 0534954251)

PSM: Practical Software Measurement

This organization is supported by the US Army and has
an extensive seven-part guide on software measure-
ments. It is available from:
www.psmsc.com

Software Engineering Institute publications

The following SEI documents provide excellent
guidance and can be obtained from:
www.sei.cmu.edu/sema

Software Measurement for DoD Systems: Recom-
mendations for Initial Core Measures (CMU/SEI-92-
TR-19)

Software Size Measurement: A Framework for
Counting Source Statements (CMU/SEI-92-TR-20)

Software Effort and Schedule Measurement: A
Framework for Counting Staff-hours and Reporting
Schedule Information (CMU/SEI-92-TR-21)

Software Quality Measurement: A Framework for
Counting Problems and Defects (CMU/SEI-92-TR-22)

Goal-Driven Software Measurement - A Guidebook
(CMU/SEI-96-HB-002)

Practical Software Measurement: Measuring for
Process Management and Improvement (CMU/SEI-
97-HB-003)

IEEE standards

982.1-1988 IEEE Standard Dictionary of Measures to
Produce Reliable Software

982.2-1988 IEEE Guide for the Use of IEEE Standard
Dictionary of Measures to Produce Reliable Software

http://www.psmsc.com/
http://www.sei.cmu.edu/sema

	Getting the measure of TickIT
	Contents
	1. Introduction

	2. What should be measured and why?
	2.1 Quantifiable benefits of making measurements
	2.2 Standards and guidance related to measurements
	2.2.1 ISO/IEC 9126 Software Engineering - Product quality
	2.2.2 ISO/IEC 14598 Information technology - Software product evaluation
	2.2.3 ISO/IEC 15939 Information technology - Software measurement process framework

	3. Developing and applying a measurement programme within an ISO 9001-compliant quality management system
	3.1 Measurements and quality objectives
	3.2 Measurement planning
	3.2.1 What needs to be covered
	3.2.2 A phased approach
	3.2.3 Some pacing issues
	3.2.4 Operating the Plan

	3.3 Measurements and ISO 9001:2000 requirements
	3.3.1 Quality management system – general requirements (clause 4.1)
	3.3.2 Control of records (clause 4.2.4)
	3.3.3 Quality policy (clause 5.3)
	3.3.4 Planning – quality objectives (clause 5.4.1)
	3.3.5 Competence, awareness and training (clause 6.2.2)
	3.3.6 Planning of product realization (clause 7.1)
	3.3.7 Review of requirements related to product (clause 7.2.2)
	3.3.8 Design and development planning (clause 7.3.1)
	3.3.9 Design and development verification (clause 7.3.5)
	3.3.10 Design and development validation (clause 7.3.6)
	3.3.11 Control of production and service provision (clause 7.5.1)
	3.3.12 Validation of processes for production and service provision (clause 7.5.2)
	3.3.13 Identification and traceability (clause 7.5.3)
	3.3.14 Control of monitoring and measuring devices (clause 7.6)
	3.3.15 Measurement, analysis and improve-ment – general (clause 8.1)
	3.3.16 Customer satisfaction (clause 8.2.1)
	3.3.17 Internal audit (clause 8.2.2)
	3.3.18 Monitoring and measurement of processes (clause 8.2.3)
	3.3.19 Monitoring and measurement of product (clause 8.2.4)
	3.3.20 Analysis of data (clause 8.4)
	3.3.21 Continual improvement (clause 8.5.1)
	3.3.22 Preventive actions (clause 8.5.3)

	4. Using software measurements
	4.1 Measurement processes for developers
	4.1.1 Organization
	4.1.2 Project planning and quality requirements
	4.1.3 Specifications
	4.1.4 Design and planning
	4.1.5 Build and test

	4.2 Measurement processes for acquirers
	4.2.1 Establishment of requirements
	4.2.2 Evaluation specification
	4.2.3 Evaluation design
	4.2.4 Evaluation execution

	4.3 Evaluating software measurements
	4.3.1 Evaluation requirements
	4.3.2 Evaluation specification
	4.3.3 Evaluation plan and evaluation modules
	4.3.4 Evaluation results

	5. Taking measurement concepts further
	6. The future
	Appendix A - Measurement terminology
	Appendix B - A summary of measurement techniques
	Appendix C - Other useful standards
	Appendix D - Reference material

